link title

Welcome to the Algebraic Geometry mini wiki at Scratchpad!

You can use the box below to create new pages for this mini-wiki. {{#ifexist:Algebraic Geometry/preload||Make sure you type [[Category:Algebraic Geometry]] on the page before you save it to make it part of the Algebraic Geometry wiki (preload can be enabled to automate this task, by clicking this link and saving that page. Afterwards, you may need to purge this page, if you still see this message).


Algeo is a wiki for students learning algebraic geometry to discuss problems, solutions, and general perspective on the subject.

Announcements

  • No seminar planned for February 20th.

Problem selections Below is a list of problems from Hartshorne. The notation (h,v) gives the height and volume of the problem. These wont be well defined numbers but here's an attempt to define them. A Hartshorne exercise E1 is in the support of another E2 if there is a solution to E2 that applies E1. The height of a problem is 1 + the cardinality of its support. Define extended support as follows. If height(E) = 1, then the extended support is just the support. If height(E) >1, then the extended support of E is the union of the support of E with the extended supports of all the problems in the support of E. The volume is 1 + cardinality of its extended support. The volume is 1 iff the height is 1. When the height is 2 the volume can be much larger.


Hartshorne Chapter I

Hartshorne I.1

Hartshorne I.2

Hartshorne I.3

Hartshorne Chapter II

Hartshorne II.1

Hartshorne II.2

  • II.2.1; H = 1
  • II.2.2; H = 2, V = 2
  • II.2.3; H = 1
  • II.2.4; H = 4, V = ...
  • II.2.5
  • II.2.6
  • II.2.7
  • II.2.8
  • II.2.9
  • II.2.10
  • II.2.11
  • II.2.12
  • II.2.13
  • II.2.14
  • II.2.15
  • II.2.16
  • II.2.17
  • II.2.18
  • II.2.19

Hartshorne II.3

  • II.3.1
  • II.3.2
  • II.3.3
  • II.3.4
  • II.3.5
  • II.3.6
  • II.3.7
  • II.3.8
  • II.3.9
  • II.3.10
  • II.3.13; H = 2, V = ....
  • II.3.12
  • II.3.13; H = 1, V = 1
  • II.3.14
  • II.3.15
  • II.3.16
  • II.3.17
  • II.3.18
  • II.3.19
  • II.3.20
  • II.3.21
  • II.3.22
  • II.3.23

Hartshorne II.4

  • II.4.1; H = 3, V = ...
  • II.4.2; H = 2, V = ...
  • II.4.3; H = 3, V = ...
  • II.4.4; H = 2, V = ..., (no part c)
  • II.4.5; H = 2, V = ...
  • II.4.6; H = 2, V = ...
  • II.4.7
  • II.4.8; H =2, V = ...
  • II.4.9
  • II.4.10
  • II.4.11
  • II.4.12

Hartshorne II.5

  • II.5.1
  • II.5.2
  • II.5.3
  • II.5.4
  • II.5.5
  • II.5.6
  • II.5.7
  • II.5.8
  • II.5.9
  • II.5.10
  • II.5.11
  • II.5.12
  • II.5.13
  • II.5.14
  • II.5.15
  • II.5.16
  • II.5.17
  • II.5.18

Hartshorne II.6

  • II.6.1
  • II.6.2
  • II.6.3
  • II.6.4
  • II.6.5
  • II.6.6
  • II.6.7
  • II.6.8
  • II.6.9
  • II.6.10
  • II.6.11
  • II.6.12

Hartshorne II.7

  • II.7.1
  • II.7.2
  • II.7.3
  • II.7.4
  • II.7.5
  • II.7.6
  • II.7.7
  • II.7.8
  • II.7.9
  • II.7.10
  • II.7.11
  • II.7.12
  • II.7.13
  • II.7.14

Hartshorne II.8

  • II.8.1
  • II.8.2
  • II.8.3
  • II.8.4
  • II.8.5
  • II.8.6
  • II.8.7
  • II.8.8

Hartshorne II.9

  • II.9.1
  • II.9.2
  • II.9.3
  • II.9.4
  • II.9.5
  • II.9.6

Hartshorne Chapter III

Hartshorne III.1

  • III.4.No problems!

Hartshorne III.2

  • III.2.1
  • III.2.2
  • III.2.3
  • III.2.4
  • III.2.5
  • III.2.6
  • III.2.7

Hartshorne III.3

  • III.3.1
  • III.3.2
  • III.3.3
  • III.3.4
  • III.3.5
  • III.3.6
  • III.3.7
  • III.3.8

Hartshorne III.4

  • III.4.1
  • III.4.2
  • III.4.3
  • III.4.4
  • III.4.5
  • III.4.6
  • III.4.7
  • III.4.8
  • III.4.9
  • III.4.10
  • III.4.11


Hartshorne III.5

  • III.5.1
  • III.5.2
  • III.5.3
  • III.5.4
  • III.5.5
  • III.5.6
  • III.5.7
  • III.5.8
  • III.5.9
  • III.5.10

Hartshorne III.6

  • III.6.1
  • III.6.2
  • III.6.3
  • III.6.4
  • III.6.5
  • III.6.6
  • III.6.7
  • III.6.8
  • III.6.9
  • III.6.10

Hartshorne III.7

  • III.7.1
  • III.7.2
  • III.7.3
  • III.7.4

Hartshorne III.8

  • III.8.1
  • III.8.2
  • III.8.3
  • III.8.4

Hartshorne III.9

  • III.9.1
  • III.9.2
  • III.9.3
  • III.9.4
  • III.9.5
  • III.9.6
  • III.9.7
  • III.9.8
  • III.9.9
  • III.9.10
  • III.9.11

Hartshorne III.10

  • III.10.1
  • III.10.2
  • III.10.3
  • III.10.4
  • III.10.5
  • III.10.6
  • III.10.7
  • III.10.8
  • III.10.9

Hartshorne III.11

  • III.11.1
  • III.11.2
  • III.11.3
  • III.11.4
  • III.11.5
  • III.11.6

Hartshorne III.12

  • III.12.1
  • III.12.2
  • III.12.3
  • III.12.4
  • III.12.5
  • III.12.6

Hartshorne Chapter IV

Hartshorne IV.1

  • IV.1.1
  • IV.1.2
  • IV.1.3
  • IV.1.4
  • IV.1.5
  • IV.1.6
  • IV.1.7
  • IV.1.8
  • IV.1.9
  • IV.1.10

Hartshorne IV.2

  • IV.2.1
  • IV.2.2
  • IV.2.3
  • IV.2.4
  • IV.2.5
  • IV.2.6
  • IV.2.7

Hartshorne IV.3

  • IV.3.1
  • IV.3.2
  • IV.3.3
  • IV.3.4
  • IV.3.5
  • IV.3.6
  • IV.3.7
  • IV.3.8
  • IV.3.9
  • IV.3.10
  • IV.3.11
  • IV.3.12

Hartshorne IV.4

  • IV.4.1
  • IV.4.2
  • IV.4.3
  • IV.4.4
  • IV.4.5
  • IV.4.6
  • IV.4.7
  • IV.4.8
  • IV.4.9
  • IV.4.10
  • IV.4.11
  • IV.4.12
  • IV.4.13
  • IV.4.14
  • IV.4.15
  • IV.4.16
  • IV.4.17
  • IV.4.18
  • IV.4.19
  • IV.4.20
  • IV.4.21
  • IV.4.22

Hartshorne IV.5

  • IV.5.1
  • IV.5.2
  • IV.5.3
  • IV.5.4
  • IV.5.5
  • IV.5.6
  • IV.5.7

Hartshorne IV.6

  • IV.6.1
  • IV.6.2
  • IV.6.3
  • IV.6.4
  • IV.6.5
  • IV.6.6
  • IV.6.7
  • IV.6.8
  • IV.6.9

Hartshorne Chapter V

Hartshorne V.1

  • V.1.1
  • V.1.2
  • V.1.3
  • V.1.4
  • V.1.5
  • V.1.6
  • V.1.7
  • V.1.8
  • V.1.9
  • V.1.10
  • V.1.11
  • V.1.12

Hartshorne V.2

  • V.2.1
  • V.2.2
  • V.2.3
  • V.2.4
  • V.2.5
  • V.2.6
  • V.2.7
  • V.2.8
  • V.2.9
  • V.2.10
  • V.2.11
  • V.2.12
  • V.2.13
  • V.2.14
  • V.2.15
  • V.2.16
  • V.2.17

Hartshorne V.3

  • V.3.1
  • V.3.2
  • V.3.3
  • V.3.4
  • V.3.5
  • V.3.6
  • V.3.7
  • V.3.8

Hartshorne V.4

  • V.4.1
  • V.4.2
  • V.4.3
  • V.4.4
  • V.4.5
  • V.4.6
  • V.4.7
  • V.4.8
  • V.4.9
  • V.4.10
  • V.4.11
  • V.4.12
  • V.4.13
  • V.4.14
  • V.4.15

Hartshorne V.5

  • V.5.1
  • V.5.2
  • V.5.3
  • V.5.4
  • V.5.5
  • V.5.6
  • V.5.7
  • V.5.8

Hartshorne V.6

  • V.6.1
  • V.6.2
Community content is available under CC-BY-SA unless otherwise noted.